Leaf area index and radiation extinction coefficient of a coffee canopy under variable drip irrigation levels


ABSTRACT. The leaf area index (LAI) is relevant in studies of phenomena at different scales, such as for the leaf to canopy scale and the calculation of the extinction coefficient of photosynthetically active radiation (kPAR), providing input for the parameterization of physiological basis models. The objective of this work was to verify the variation of the LAI and the coffee kPAR subjected to different drip irrigation levels (130, 100, 70, and 40%) and to compare the data obtained from radiation bar linear sensors (SunScan) in the plants that received full irrigation with the values found by other LAI estimation methodologies. The study was conducted in Piracicaba, São Paulo State, Brazil, using the species Coffea arabica cv. Red Catuaí IAC 144; a drip irrigation system was adopted, with the irrigation controlled by tensiometry. The mean LAI values were higher in the L130 (irrigation level of 130%) and L100 (irrigation level of 100%) treatments than those with deficit irrigation depths. The mean kPAR values were lower for the L130 and L100 treatments than the values found in the deficit irrigation depth treatments. When comparing SunScan to other methodologies, the mean error (ME) and absolute mean error (AME) were high.



Coffea arabica, LAI, SunScan, water deficit